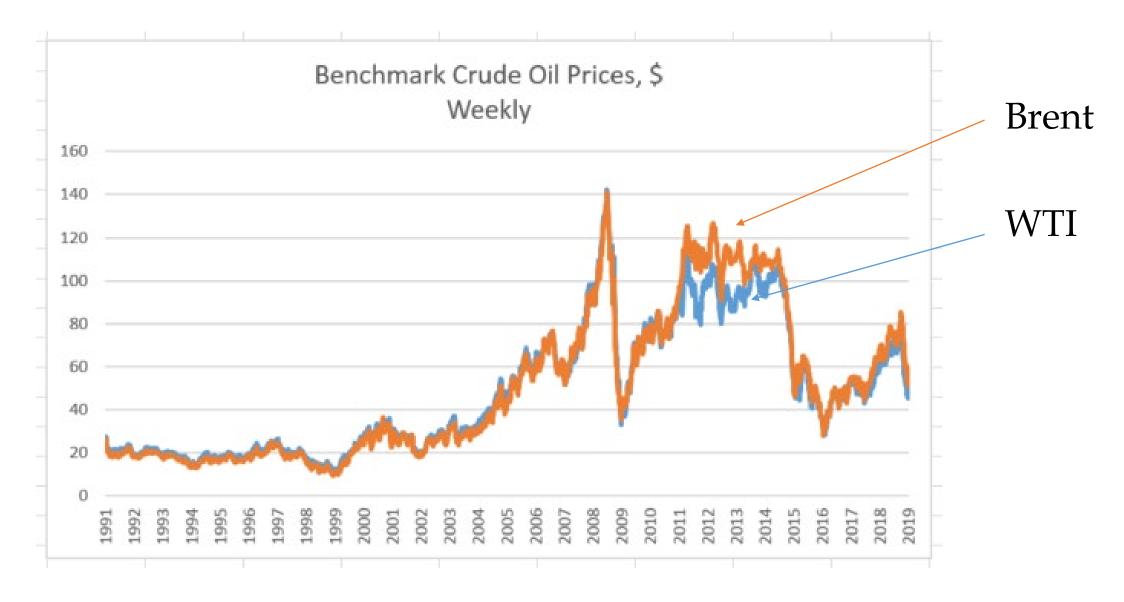
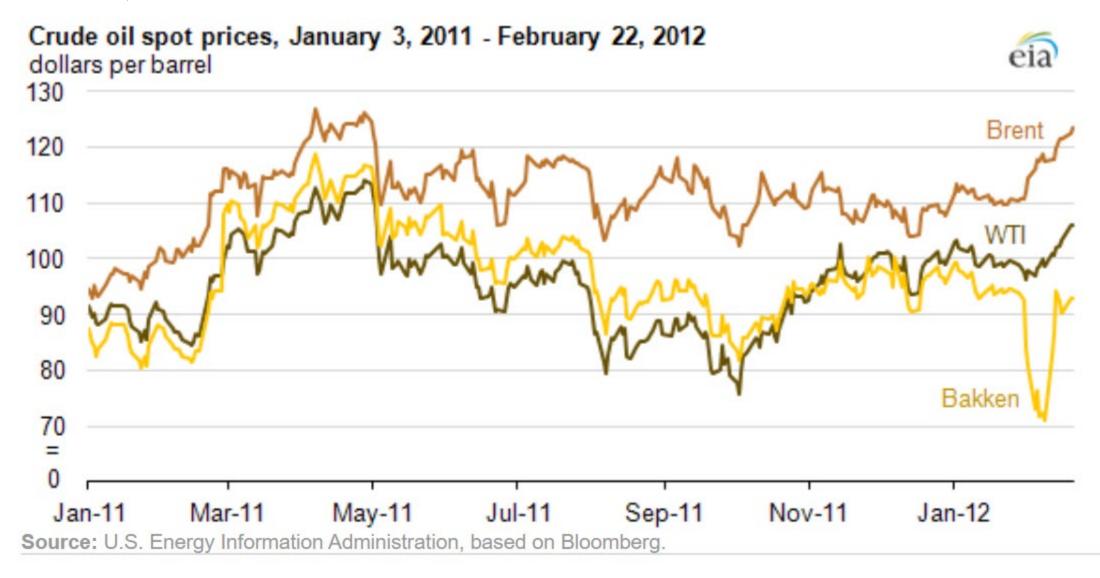
Time-Varying Jump Intensities and the Interconnectedness of the North American Crude Oil Complex

Neil A. Wilmot


Department of Economics
Labovitz School of Business and Economics
University of Minnesota Duluth
Institute on the Environment, UMN

AIEE / IAEE Dec 2020


Global Pool Hypothesis

- Adleman (1984) "The world oil market, like the world ocean, is one great pool."
- Large price differentials between crude streams have been observed recently.
- Dar (2019)
 - post-2010, the two markets [WTI, Brent] have been witnessing growing divergence, providing evidence that the two markets have moved toward 'regionalization'.

West Texas Intermediate, Brent crude oil

WTI, Brent and Bakken

Global Pool Hypothesis

- Adleman (1984) "The world oil market, like the world ocean, is one great pool."
- Large price differentials between crude streams have been observed recently.
- Dar (2019)
 - post-2010, the two markets [WTI, Brent] have been witnessing growing divergence, providing evidence that two markets have regionalized.

Can we quantify the relationship between the crude oil streams, specifically within the North American complex?

Literature Review

- Global Pool Hypothesis
 - Adleman (1984), Ewing and Harter (2000), Hammoudeh et al (2008), Fattouh (2010), Wilmot (2013), Dar (2019)
- Discontinous stochastic processes
 - Askari and Krichene (2008), Lee *et al* (2010), Wilmot and Mason (2013); Postali and Pichetti (2006)
- Volatility
 - Bollerslev (1986), Pindyck, R. (2004), Efimova and Serletis (2014)

Methodology

• Utilizing the autoregressive Jump Intensity (*ARJI*) model of Chan and Maheu (2002)

$$R_{t} = \mu + \sum_{i=1}^{l} \phi R_{t-i} + \sqrt{h_{t}} z_{t} + \sum_{k=1}^{n_{t}} Y_{t.k}$$
 $z_{t} \sim NID(0,1)$

- The conditional jump size is given as $Y_{t,k} \sim N(\theta, \delta^2)$
- And the number of jumps arriving between t-1 and t, is described by the discrete counting process, n_t
- And this process is distributed as a Poisson random variable, described by the jump intensity $\lambda_{i} > 0$

Methodology cont'd

- The process that describes the evolution of the conditional jump intensity must be specified.
- As in Chan and Maheu (2002), an AR(1) process describes the evolution of λ_t such as:

$$\lambda_t = \lambda_0 + \sum_{i=1}^r \rho_i \lambda_{i-1} + \sum_{i=1}^s \gamma_i \xi_{t-i}$$

Methodology cont'd

- The time series values of $\hat{\lambda}_t$ are obtained, and a GARCH model is constructed.
- Univariate Model

$$\hat{\lambda}_t = c_0 + \varepsilon_t$$
, and $\varepsilon_t \sim N(0, h_t)$

where

$$h_{t} = \alpha_{0} + \alpha_{1} \varepsilon_{t-1}^{2} + ... + \alpha_{q} \varepsilon_{t-q}^{2} + \beta_{1} h_{t-1} + ... + \beta_{p} h_{t-p}$$

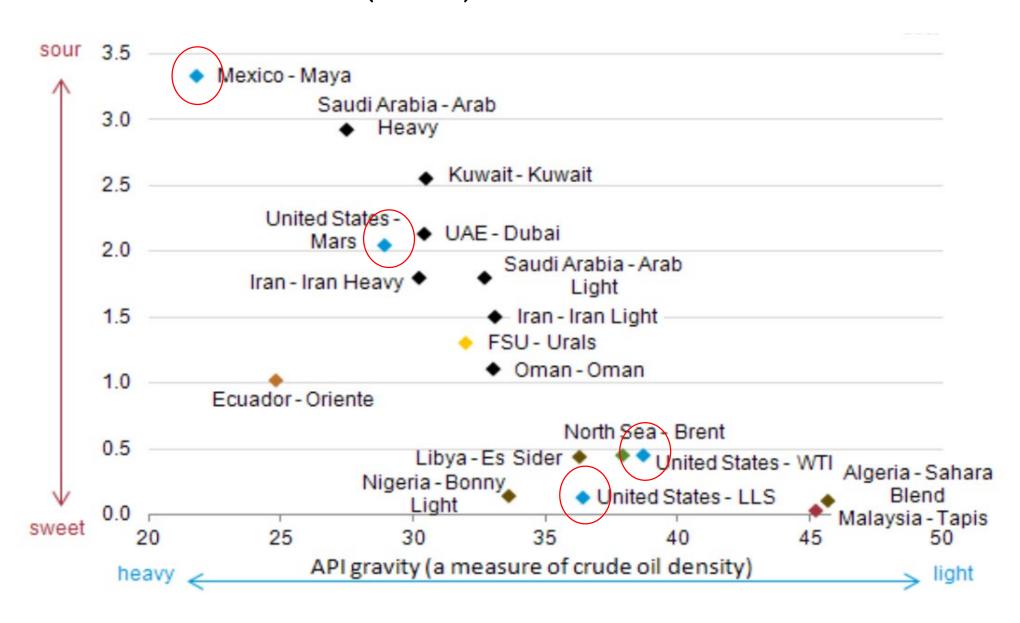
Methodology cont'd

 Bollerslev (1990) specifies a multivariate GARCH model that has a constant conditional correlations (CCC), with conditional covariance matrix

$$H_t = D_t \Gamma D_t$$

• For example, in the bivariate case

$$D_t = \begin{bmatrix} \sqrt{h_{11t}} & 0 \\ 0 & \sqrt{h_{22t}} \end{bmatrix} \text{ and } \Gamma = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}.$$


Table 2: Summary Statistics for Log Crude Oil Price Returns

Data

The benchmark *WTI* series along with a mix of secondary blends, across *density* and *Sulphur* content

		•			
Blend	ln WTI	ln <i>LLS</i>	ln Mars	ln Lou. Heavy	ln Mex. Maya
Start	01/05/2000	01/05/2000	01/05/2000	01/05/2000	01/05/2000
End	12/31/2018	12/31/2018	12/31/2018	12/31/2018	12/31/2018
Mean	0.010	0.014	0.016	0.014	0.020
Median	0.090	0.071	0.072	0.102	0.095
Maximum	21.28	15.437	15.431	15.028	13.274
Minimum	-16.550	-18.349	-18.619	-19.060	-18.437
Std. Dev.	2.420	2.356	2.646	2.437	2.285
Coefficient of					
Variation	220.80%	164.5%	161.9%	169.8%	116.5%
Skewness	-0.04	-0.085	-0.165	-0.168	-0.283
Kurtosis	4.51	3.78	3.65	3.71	4.71
JB Test	4030.7	2836.7	2688.2	2760.6	4469.9
<i>p</i> -value	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Count	4763	4763	4763	4763	4763
Crude Character	ristics				
API Density	40	35.6	30.3	32.9	22
•	Light	Light	Light	Heavy	Heavy
Sulphur content	0.3	0.37	1.91	0.35	3.3
%	Sweet	Sweet	Sour	Sweet	Sour

Crude Oil Blends (EIA)

Results: Stationarity

Table: Stationarity Tests

Table: Stationarty Tests									
		Modified							
Series		ADF test I	ags	KPSS	Lags				
Prices									
	WTI	-1.529	5	2.29	31				
	LLS	-1.396	1	2.33	31				
	Mars	-1.495	1	2.30	31				
	Lou. Hvy	-1.428	1	2.29	31				
	Mex. Maya	-1.547	4	2.22	31				
Ln Ret	urns								
	WTI	-3.732	31	0.0323	31				
	LLS	-3.473	30	0.0367	31				
	Mars	-3.529	30	0.036	31				
	Lou. Hvy	-3.308	30	0.0361	31				
	Mex. Maya	-7.23	30	0.0336	31				
3.7	3 6 1.0 1 1 1	NT	TDO	1 1	2 (0				

Note: Modified ADF test with ERS critical values-3.48 (1%), -2.89 (5%), -2.57 (10%). Trend.

Results: Jump Diffusion Process (ARJI)

Table: ARJI Results

	LLS		West Texas int	ermediate	M	ars	Mex	. Maya	Lou.	Heavy
	Constant	ARJI	Constant	ARJI	Constant	ARJI	Constant	ARJI	Constant	ARJI
μ	0.1074 ***	0.0889 ***	0.1149 ***	0.0906 ***	0.1787 ***	0.1408 ***	0.1238 ***	0.1352 ***	0.1134 ***	0.0935 ***
	0.033	0.030	0.032	0.030	0.046	0.043	0.029	0.031	0.035	0.032
ω	0.0221 ***	0.0190 ***	0.0191 **	0.0185 ***	0.0063	0.0129	0.0172 **	0.0164 ***	0.0235 **	0.0019 ***
	0.010	0.007	0.008	0.006	0.011	0.008	0.007	0.006	0.010	0.007
α	0.0499 ***	0.0295 ***	0.0452 ***	0.0280 ***	0.0557 ***	0.0291 ***	0.0455 ***	0.0367 ***	0.0442 ***	0.0288 ***
	0.007	0.005	0.006	0.005	0.007	0.008	0.006	0.005	0.007	0.005
β	0.9344 ***	0.9571 ***	0.9409 ***	0.9590 ***	0.9309 ***	0.9575 ***	0.9384 ***	0.9478 ***	0.9418 ***	0.9591 ***
	0.009	0.007	0.008	0.007	0.009	0.009	0.008	0.007	0.009	0.006
ζ	2.8578 ***	2.9105 ***	3.0600 ***	3.1476 ***	2.2538 ***	2.4169 ***	3.1266 ***	2.9550 ***	3.1263 ***	3.1365 ***
	0.373	0.319	0.401	0.357	0.330	0.298	0.358	0.331	0.418	0.363
η	-0.8883 ***	-0.6302 ***	-1.2451 ***	-0.7761 ***	-0.9096 ***	-0.5988 ***	-1.2078 ***	-1.1648 ***	-1.1474 ***	-0.7660 ***
	0.266	0.208	0.336	0.245	0.256	0.175	0.331	0.263	0.271	0.249
λ	0.0980 ***	0.0417 ***	0.0847 ***	0.0303 **	0.1887 ***	0.0303 *	0.0855 ***	0.0606 **	0.0823 ***	0.0469 ***
	0.033	0.015	0.027	0.015	0.071	0.018	0.023	0.025	0.029	0.017
ρ		0.6795 ***		0.7524 ***		0.8908 ***		0.4408 **		0.5756 ***
		0.115		0.143		0.065		0.190		0.102
γ		0.7373 ***		0.6004 ***		0.4932 ***		0.4496 ***		0.8221 ***
		0.196		0.174		0.178		0.149		0.188

Results: GARCH(1,1) Process for $\hat{\lambda}_t$

Table: Univarite GARCH Model on Conditional Jump Intensities

		WTI	LLS	Mars	Mex. Maya	Lou. Heavy
	\mathbf{c}_0	0.0889 ***	0.1001 ***	0.2065 ***	0.1006 ***	0.0886 ***
		0.0007	0.0007	0.0009	0.0007	0.0006
	$\alpha_{\it 0}$	0.0038 ***	0.0057 ***	0.0040 ***	0.0031 ***	0.0064 ***
		0.0001	0.0001	0.0001	0.0000	0.0000
—	α_{I}	0.8294 ***	0.9402 ***	0.7780 ***	0.6838 ***	1.1734 ***
		0.0260	0.0271	0.0267	0.0188	0.0293
	β_{I}	0.1022 ***	0.0652 ***	0.1474 ***	0.0320 ***	
,		0.0114	0.0084	0.0181	0.0044	
	L	5070.6	4354.8	3345.4	6295.4	4418.7
	AIC	-10133.2	-8701.7	-6682.8	-12582.8	-8831.5

Note: The standard errors are presented below the coefficients. L is the log-likelihood function. *, **, and * represent the 10%, 5% and 1% level of significance, respectively. n = 4760

Results: Multivariate GARCH model; CCC

				CCC M	[odel				
	i =	WTI		WTI		WTI		WTI	
Coefficient	<i>j</i> =	LLS		Mars		Maya		Lou Heavy	
GARCH M	odel I	Parameter	Estima	ates					
ρ		0.8492	***	0.8088	***	0.7493	***	0.8093	***
		0.004		0.005		0.006		0.005	
C_{II}		0.0041	***	0.0031	***	0.0027	***	0.0037	***
		0.000		0.000		0.000		0.000	
C_{22}		0.0059	***	0.0020	***	0.0031	***	0.0063	***
		0.000		0.000		0.000		0.000	
α_{II}		0.6292	***	0.4589	***	0.2942	***	0.5264	***
		0.059		0.043		0.030		0.052	
α_{22}		0.6766	***	0.1574	***	0.3050	***	0.9369	***
		0.062		0.018		0.051		0.075	
β_{II}		0.0792	***	0.2673	***	0.3775	***	0.1468	***
		0.018		0.030		0.030		0.029	
β_{22}		0.0752	***	0.5983	***	0.1082	***	0.0226	***
		0.020		0.044		0.035		0.008	

Implications of Multivariate GARCH model

- The ARJI models fits the data well.
 - Jumps are statistically important in the crude oil markets
- Time varying volatility found in the $\hat{\lambda}_t$ series.
- Based on the results of the CCC estimates, there appears to be a significant degree of correlation among the contemporaneous shocks to the jump intensities, in the series under study.

Future Work

- The CCC garch assumption of time invariant conditional correlation matrix is restrictive.
 - Dynamic conditional correlation (DCC) model, BEKK specification
- Structural breaks
 - The shale oil revolution, experienced in the US, could plausibility be responsible for a break in the models or relationships.
- Breadth of coverage
 - Bakken prices, Canadian prices, other regional prices