

THE IMPACT OF ECONOMIC GROWTH ON THE CO₂ EMISSIONS IN AUSTRALIA: ENVIRONMENTAL KUZNETS CURVE AND DECOUPLING INDEX

António Cardoso Marques, José Alberto Fuinhas, Patrícia Hipólito Leal

NECE-UBI, and University of Beira Interior, Management and Economics Department; Covilhã, Portugal

Motivation and Debate

Global warming is

a threat for the

humanity.

It is possible

growing without

pollute? Trade off

between economic

growth and CO₂

emisisons.

Methodology

Results

Main achievements

Answering the questions and Contribution

Patricia.leal@ubi.pt

Motivation

Australia is the sixth largest world.

One of the tem largest emitters of greenhouse gases.

Twuenty-sixth consecutive years without ressection on the economic growth.

country in the

Marques, Fuinhas, Leal Rome, 4th November 2017

Debate

Motivation and Debate

Methodology

Results

Main achievements

Answering the questions and Contribution

Patricia.leal@ubi.pt

Theoretical studies:

- Dinda, 2004
- Stern, 2004

Empirical studies:

- Relationship between CO2 emissions and economic growth in Algeria, with energy use, electricity consumption, exports and imports. (Bouznit & Pablo-Romero, 2016)
- EKC is not valid in Qatar with CO2 emissions but held with ecological footprint, ARDL model. (Mrabet & Alsamara, 2017)

Research Questions

Motivation and Debate

Methodology

Results

Main achievements

Answering the questions and Contribution

✓ Is the Environmental Kuznets Curve hypothesis verified in Australia?

✓ How the decoupling index in Australia behave?

 \checkmark Australia has a trade-off between economic growth and CO_2 emissions?

Data

Motivation and Debate

Methodology

Results

Main achievements

Answering the questions and Contribution

Patricia.leal@ubi.pt

❖This study uses annual data from 1965 to 2015 for Australia.

❖ <u>Variables used:</u>

Share of primary energy consumption

	Gross Domestic Product	(LGDP)	Constant Local Currency Unit
	❖ CO ₂ Emissions	(LCO2)	Millions of tonnes
•	❖ Oil Concumption	(LOIL)	Millions of tonnes
	❖ Coal Consumprion	(LCOAL)	Millions of tonnes in oil equivalent
•	Renewable Energy Consumption	(LRES)	Millions of tonnes in oil equivalent

Hereafter, the prefixes "D" means the first differences and "L" means the natural logarithm.

Data characteristics

Motivation and Debate

Methodology

Results

Main achievements

Answering the questions and Contribution

Patricia.leal@ubi.pt

Unit Root Test - ADF,
PP and KPSS

All variables are integrated of order one, I(1).

Structural Break Unit Root Test - Zivot and Andrews

Table: Results Zivot and Andrews unit root tests (4 lags)

LCO2 2007 2007 2006

ARDL

Marques, Fuinhas, Leal Rome, 4th November 2017

Methodology

Motivation and Debate

Methodology

Results

Main achievements

Answering the questions and Contribution

Patricia.leal@ubi.pt

Marques, Fuinhas, Leal Rome, 4th November 2017

Autoregressive Distributed Lag (ARDL)

- Proposed by Pesaran, Shin, and Smith (2001).
- ➤ Application of dummies without affecting the results.
- Unbiased long-run estimation.

Debate

Motivation and

Methodology

Results

Main achievements

Answering the questions and Contribution

$$\begin{split} DLCO_{2,t} &= c + \propto_1 TREND + \propto_2 LNCO_{2,t-1} + \propto_3 LGDP_{t-1} + \propto_4 (LGDP_{t-1})^2 + \propto_5 LOIL_{t-1} + \propto_6 LCOAL_{t-1} + \propto_7 LRES_{t-1} \\ &+ \sum_{i=1}^k \beta_{1i} DLCO_{2,t-1} + \sum_{i=0}^k \beta_{2i} DLGDP_{t-i} + \sum_{i=0}^k \beta_{3i} D(LGDP_{t-i})^2 + \sum_{i=0}^k \beta_{4i} DLOIL_{t-i} + \sum_{i=0}^k \beta_{5i} DLCOAL_{t-i} \\ &+ \sum_{i=0}^k \beta_{6i} DLRES_{t-i} + \varepsilon_t \end{split}$$

Environmental Kuznets Curve (EKC)

Motivation and Debate

Methodology

Results

Main achievements

Answering the questions and Contribution

....

Answering the

❖Proposed by Grossman and Krueger (1991).

❖Origin in the Inverted-U hypothesis developed by Kuznets (1955).

- 1st phase: increase of the environmental degradation factors and the income
- 2 nd phase: the turning point was achieved and the CO₂ emissions start to decrease

 $B_1 > 0$, $\theta_2 < 0 \rightarrow$ Inverted U-shaped relationship, EKC.

$$LNCO_{2it} = c + \beta_1 LGDP_{it} + \beta_2 LGDP_{it}^2 + \beta_3 LOIL_{it} + \beta_4 LCOAL_{it} + \beta_5 LRES_{it} + \varepsilon_{it}$$

Decoupling Index (DI)

Motivation and Debate

Methodology

Results

Main achievements

Answering the questions and Contribution

Proposed by OCDE (2002).

$$DI = 1 - \frac{\frac{M^t}{Y^t}}{\frac{M^0}{Y^0}} = 1 - \frac{EPI^t}{EPI^0} \Leftrightarrow DI = 1 - \frac{\frac{CO2t}{GDPt}}{\frac{CO20}{GDP0}}$$

- "0" the starting year
- "t" final year
- "M" the indicator of environmental pressure
- "Y" GDP in constant prices.

- ❖ DI ≥ 1 there is strong decoupling (absolute decoupling).
- ❖ 0 < DI < 1 there is a weak effect of decoupling (relative decoupling).
- ❖ DI ≤ 0 there is no decoupling effect (coupling) the DI is negative.

EKC Results

Motivation and Debate

Methodology

Results

Main achievements

Answering the questions and Contribution

Patricia.leal@ubi.pt

ARDL estimation

		Variable	Coefficient
	RES does not have impact on CO ₂ — emissions —	D(LOIL P)	0.411167***
		D(LCOAL P)	0.2964***
		D(LGDP2)	0.457605**
		D(LGDP)	-24.27403**
	$\beta_1 > 0$	LCO2(-1) (ECM)	-0.181682***
		LGDP(-1)	2.308582*
	β ₂ <0	– (LGDP2(-1)	-0.040789*
		С	-31.60444*
		time dummies	
	_	D_1982	-0.049319***
	_	D_2006	0.060072***
	_	D_2001	0.033516**
	-	Notos: *** 10/. ** E0/. *	10/. the results are based on E. statistics () lag

Notes: *** - 1%; ** - 5%; * - 1%; the results are based on F - statistic; () – lag order;

Is verified the EKC hypothesis

Diagnostics tests:

- Normal behavior of the residuals;
- Rejection of the serial correlation;
- Residuals homoscedastic;
- Well specification of the model;
- Parameters stable during the period used.

Motivation and Debate

Methodology

Results

Main achievements

Answering the questions and Contribution

Main achievements

Fossil fuels

Motivation and Debate

Methodology

Results

Main achievements

Answering the questions and Contribution

Patricia.leal@ubi.pt

EKC

Economic growth and CO₂ emissions increase.

Australia has not yet hit the turning point.

Relative Decoupling

The CO₂ emissions increase slower than the GDP. Coal and oil consumption increase the CO₂ emissions.

Reduce the consumption of fossil fuels. -

Agreement between the world's largest coal producers in 2006.

RES

The renewable energy consumption do not has impact on the CO₂ emissions.

Implement energy efficiency measures.

Answering the questions and Contribution

Motivation and Debate

Methodology

Results

Main achievements

Answering the questions and Contribution

Patricia.leal@ubi.pt

Turning Point

Absolute decoupling

Environmental targets

- Energy demand management and control
- Energy efficiency
- Reduce the fossil fuels consumption
- Invest on renewable energy technology
- It is possible has a sustainable develop? Growing without polluting?
 - Australia has been growing and reducing your rate of CO2 emissions.

Contribution

- Studied Australia individually.
- ARDL model
- Add energy variable to the EKC estimation: fossil fuels and renewable consumption.
- Decoupling Index.

THE IMPACT OF ECONOMIC GROWTH ON THE CO₂ EMISSIONS IN AUSTRALIA: ENVIRONMENTAL KUZNETS CURVE AND DECOUPLING INDEX

António Cardoso Marques, José Alberto Fuinhas, Patrícia Hipólito Leal

NECE-UBI, and University of Beira Interior, Management and Economics Department; Covilhã, Portugal

