

The impact of utility-scale RES power production on the Italian electricity prices

Damiano Alessi, <u>Cinzia Bonaldo</u>, Fulvio Fontini

November 29, 2024

2. Model description

3. Results

2. Model description

3. Results

(1) Market Clearing Price – No VRES

(1) Market Clearing Price – with VRES

(1) Italian bidding zones e transmission capacity

RSE Ricerca Sistema

Italian zonal configuration and consumption (2022)

Transmission constraints are critical in determining whether energy produced in one zone can be efficiently transported to zones with higher demand

Development Plan

From	То	Capacity 2022	Capacity 2030
Sicily	Calabria	1300	4000
Calabria	Sicily	1500	4000
Calabria	South	2350	5200
South	Calabria	1100	5200
South	Centre-South	5100	8800
Centre-South	South	2400	8800
Sardinia	Centre-South	900	1900
Centre-South	Sardinia	720	1900
Centre-South	Centre-North	2800	8300
Centre-North	Centre-South	2900	8300
Centre-North	North	3100	8500
North	Centre-North	4300	8500

In order take trans. capacity into account, we consider the maximum possible capacity that can be transfer across zones as released by TERNA (ITA TSO), regardless of the specific season and market configurations.*

*TERNA simulates several possible scenarios for the transmission limits, depending on the availability of different power plants and seasonal conditions. We cannot replicate here the power dispatching of all Italian system in each scenario.

2. Model description

3. Results

(2) INPUT

New VRES capacity (July 2023)

Туре	zone	Capacity (MW)	TOT	
solar	CALA	117		
wind	CALA	417		
wind off-shore	CALA	2 211	2 475	
solar	CNOR	450		
wind	CNOR	361	811	
solar	CSUD	2 218		
wind	CSUD	1 515		
wind off-shore	CSUD	2 424	-6.157	
solar	NORD	1 599		
wind	NORD	109		
wind off-shore	NORD	700	2 408	
solar	SARD	7 268		
wind	SARD	5 094		
wind off-shore	SARD	5 139	$17\ 501$	
solar	SICI	8 114		
wind	SICI	2 475		
wind off-shore	SICI	6 225	16 814	
solar	SUD	15 824		
wind	SUD	5 402		
wind off-shore	SUD	10 014	31 240	
solar	ITA	35 590		
wind	ITA	15 374		
wind off-shore	ITA	26 713	$77\ 677$	

Data from the EIA* repository managed by the Italian ministry (MASE) that maps all large-scale investments (no very small-scale or small-scale) * National Energy and Climate Plan Technical Committee Obviously not all this capacity is always available......

De-rating capacity factors

1	0.0	0.6	ZONE	MONTH	Solar	Wind
2	0.0	0.4	NORD	Mar	0.75	0.6
3	0.0	0.45	NORD	Lug	0.7	0.1
4	0.0	0.5	NORD	Nov	0.3	0.6
5	0.0	0.45	CNOR	Mar	0.75	0.65
6	0.05	0.4	CNOR	Lug	0.75	0.2
7	0.08	0.45	CNOR	Nov	0.3	0.6
8	0.1	0.45	CSUD	Mar	0.75	0.65
9	0.3	0.5	CSUD	Lug	0.8	0.3
10	0.55	0.45	CSUD	Nov	0.4	0.8
11	0.75	0.7	SUD	Mar	0.8	0.65
12	0.8	0.8	SUD	Lug	0.9	0.3
13	0.85	0.75	SUD	Nov	0.4	0.8
14	0.75	0.7	CALA	Mar	0.8	0.7
16	0.6	0.6	CALA	Lug	0.9	0.3
17	0.0	0.5	CALA	Nov	0.4	0.7
18	0.4	0.6	SICI	Mar	0.8	0.7
19	0.1	0.6	SICI	Lug	0.9	0.3
20	0.05	0.5	SICI	Nov	0.4	0.9
21	0.0	0.7	SARD	Mar	0.75	0.75
22	0.0	0.75	SARD	Lug	0.85	0.3
23	0.0	0.7	SARD	Nov	0.3	0.9
24	0.0	0.6				

3

(2) Model and simulation

Use offer and demand bids of each zone from GME (IT NEMO). Reference years: 2019 & 2022 – 2 representative day (Wed. & Sun.) of 3 months (Mar. & Jul. & Nov.)

ALGORITHM

- Starting by southern most zones (Sicily, Sardinia, Calabria for 2022, and South), which are typically net exporters of VRES energy but face significant transmission constraints.
- Moving northward, examining the potential for market coupling, as northern zones are net importers and face fewer transmission constraints.

Status quo scenario

Simulation of all zones clearings based on historical offer and demand bids

(2) Model and simulation

2. Model description

3. Results

(3) Results – overall impact of VRES

Median values of clearing prices

zone	2019		
	Status Quo	RES	
PUN	50.64	26.50	
NORD	50.59	48.75	
CNOR	50.59	48.73	
CSUD	50.64	0.00	
SUD	50.02	0.00	
CALA			
SICI	47.76	0.00	
SARD	50.64	0.00	

It seems that the different impact across zones depend on the one hand on the **differences in VRES investments** and on the other hand on the **transmission capacity limits**

Status quo scenario

zone	2022	
	Status Quo	RES
PUN	276.03	140.28
NORD	276.03	275.04
CNOR	276.70	275.00
CSUD	276.54	155.60
SUD	276.54	0.00
CALA	270.13	0.00
SICI	270.25	0.00
SARD	276.54	0.00

Median values of clearing prices

(3) Results – relative impact of VRES

Analysis replication considering each sources (PW, onshore W, offshore W) singularly

2019

(3) Results – relative impact of VRES

2022

The frequency with which price goes to 0 in some zones, but not in all of them signals the difficulties in dispatching the full amount of VRES energy, in particular from C-South to C-North (2019) and from South to C-South (2022). This is confirmed by the figures of the curtailments.

Average curtailments with 2022 transmission capacity

	zone	% of new RES (2022 sim.)	% of new RES (2019 sim.)
	SARD	85.25	80.68
VRFS gen, potential is	SICI	59.43	56.17
higher, trans. cap.	CALA	19.57	/
constraints significantly	SUD	86.95	82.81
limit the ability to transport	CSUD	53.87	79.30
energy to northern area	CNOR	0	0

Net Excess VRES Supply – Trans. Capacity

Quantity of new VRES

Percentage of the total energy produced from VRES that cannot be dispatched due to the insufficient demand and transmission capacity.

(3) Results – overall impact of VRES

Median values of clearing prices

zone	2019			
	Status Quo	Price RES	Price RES TC 2030	Ľ
PUN	50.64	26.50	18.99	
NORD	50.59	48.75	38.73	Še
CNOR	50.59	48.73	38.98	ō
CSUD	50.64	0.00	0.00	
SUD	50.02	0.00	0.00	ופ
CALA	_	—	_	17
SICI	47.76	0.00	0.00	a
SARD	50.64	0.00	0.00	2

Best case scenario for trans. cap. expansion

Transmission capacity expansion has a positive impact reducing the average prices of the northern zones

Median values of clearing prices

zone		2022		
Lone	Status Quo	Price Res	Price Res TC 2030	
PUN	276.03	140.28	108.63	De
NORD	276.03	275.04	209.55	Se
CNOR	276.70	275.00	210.33	0
CSUD	276.54	155.60	156.13	Ř
SUD	276.54	0.00	0.00	e
CALA	270.13	0.00	0.00	Ē
SICI	270.25	0.00	0.00	a
SARD	276.54	0.00	0.00	3

Development Plan

Status quo scenario

RES scenario

RES TC 2030 scenario

(3) Results – relative impact of VRES

Analysis replication considering each sources (PW, onshore W, offshore W) singularly

2019

PUN North Centre-North Centre-South South Sicily Sardinia 100 100 100 100 100 100 100 80 80 80 80 80 80 80 Status quo scenario 60 60 60 60 -60 60 -60 ŝέ 40 40 40 40 40 40 W offshore 20 20 20 20 20 20 -20 scenario PSQ PSolar PWind PWind O. highest impact derives from offshore wind followed by solar

(3) Results – relative impact of VRES

2022

Average curtailments with 2030 transmission capacity

zone	% of new RES (2022 sim.)	% of new RES (2019 sim.)
SARD	65.84	62.76
SICI	21.80	19.64
CALA	8.96	/
SUD	51.00	49.08
CSUD	23.96	40.72
CNOR	0.00	0.00

2. Model description

3. Results

Simulate the impact on the equilibrium prices of two reference years accruing from the huge flow of investments in VRES capacity in Italy.

RSE Sistema

Market clearings

Different impact across technologies.

PV has the highest capacity investment values but has not the highest positive impact on prices There is price and quantity risk due to curtailments.

Even the TSO ambitious plan will not eliminate them The foreseen investments suggest that **investors are neglecting investment risks** when requesting authorizations for utilityscale VRES

Rimani sempre aggiornato con RSE perché **#wemoversearch**

Cinzia Bonaldo

cinzia.bonaldo@rse-web.it

www.rse-web.it

@Ricerca sul Sistema Energetico - RSE SpA

@RSEnergetico

RSE SpA - Ricerca sul Sistema Energetico

