

HARNESSING POTENTIAL OF BIOLOGICAL CO₂ CAPTURE FOR CIRCULAR ECONOMY

Socio-economic assessment of CCUS for the expansion of the circular bioeconomy, the CooCE project

Padua, 28-30 November, 2024

Dr Rocio Diaz-Chavez Centre for Environmental Policy Imperial College London

Department for Energy Security & Net Zero

OUTLINE

- The CooCE project
- Socio-economic assessment methodology
- Results
- Conclusions

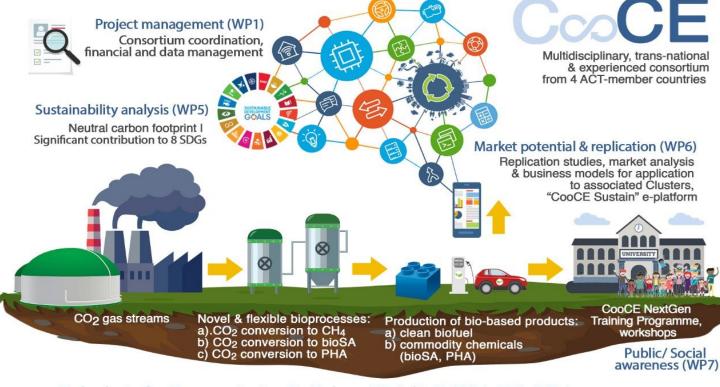
CooCE Partners

CooCE in UK: Assessment of CO2 conversion technologies and impacts of CooCE on environment and socioeconomy through a holistic sustainability analysis, stakeholder engagement.

CooCE in Denmark: Evaluation of CO₂ conversion to bioSA will be performed in Denmark using biogas as the source for CO₂. Selection of high performance succinogenic bacterial will be evaluated for their performance and optimized by evolutionary adaptation. The best fit for using biogas and high strength organic wastes will be chosen. The process will be validated at pilot scale at DTU with real wastes and biogas in collaboration with Lemvig biogas plant. Targets for high bioSA concentrations in the final fermentation broth are>45g/L, a biomethane content of >90%, >4 kg CO_2 captured/m³day.

CooCE in Italy: Evaluation of CO₂ conversion into PHA will be performed in Italy using emissions from BTS biogas s.r.l. Mainstream and alternative PHA producers will be tested to choose the best fit for the specific gaseous CO₂-rich streams (biogas) ensuring to use the best possible microbial strains. PHA produced will be further evaluated by ENP to pre-commercial phase producing prototype bioplastic bv materials.

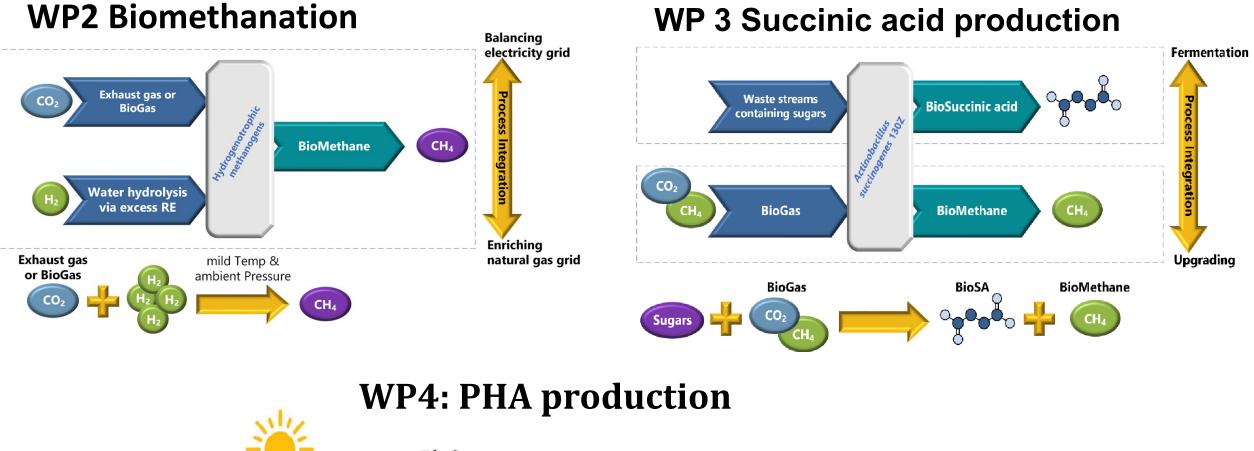
CooCE in Greece: Evaluation of CO₂ hydrogenation will be performed in lab and pilot scale conditions in Greece addressing the needs of the Greek Cluster of Raw Materials (www.grawmat.gr). The GRawMat cluster, led by EcoResources (member of the European Raw Materials Alliance), is comprised by the top-10 Greek mining industries (Mytilineos Group, Hellenic Gold, Stonegroup, Grecian Magnesites, North Aegean Slops, Mathios Refractories, GeoHellas, Aegean Perlites, Eco Efficiency, Ellimet.). The overall goal is to demonstrate for the first time an optimized bioprocess able to capture and transform >5 kg CO₂/m³reactor/day.

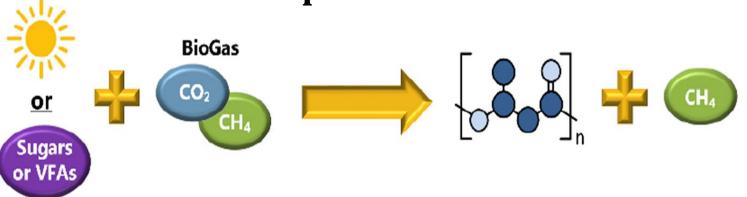


CooCE Concept & Main Objectives

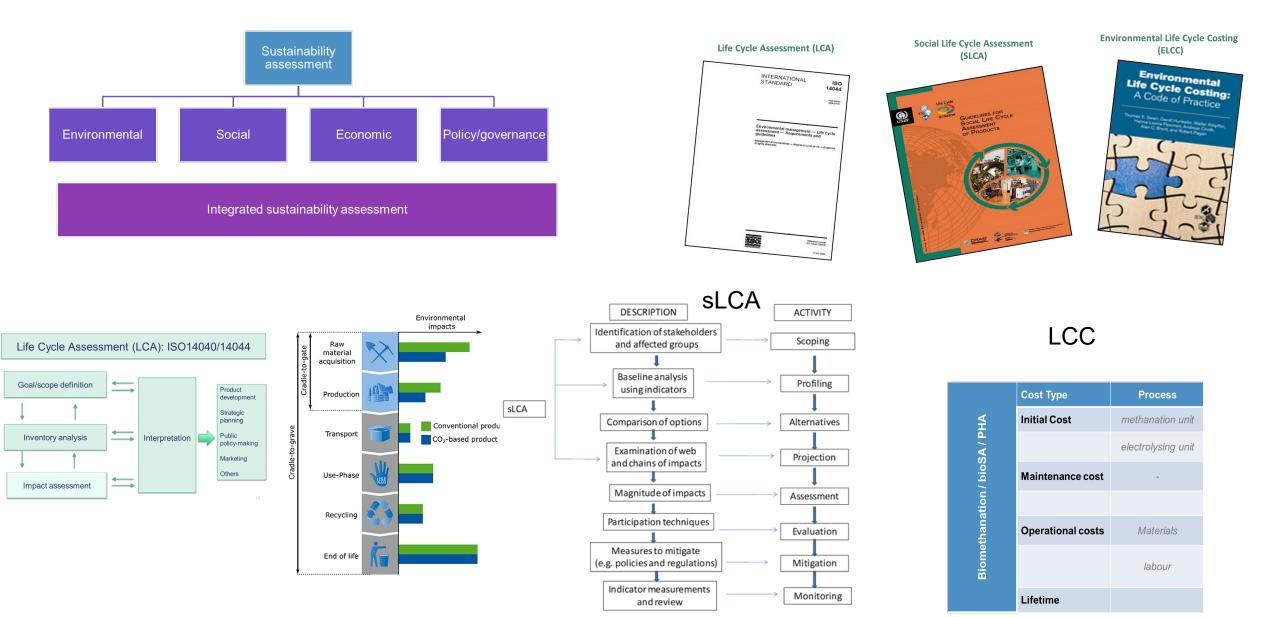
Industrial sectors currently account for 20% of global CO₂ emissions

CooCE targets to develop and
demonstratea novelbiotechnologicalplatform where**CO2** from biogas or exhaust gassesis converted into:

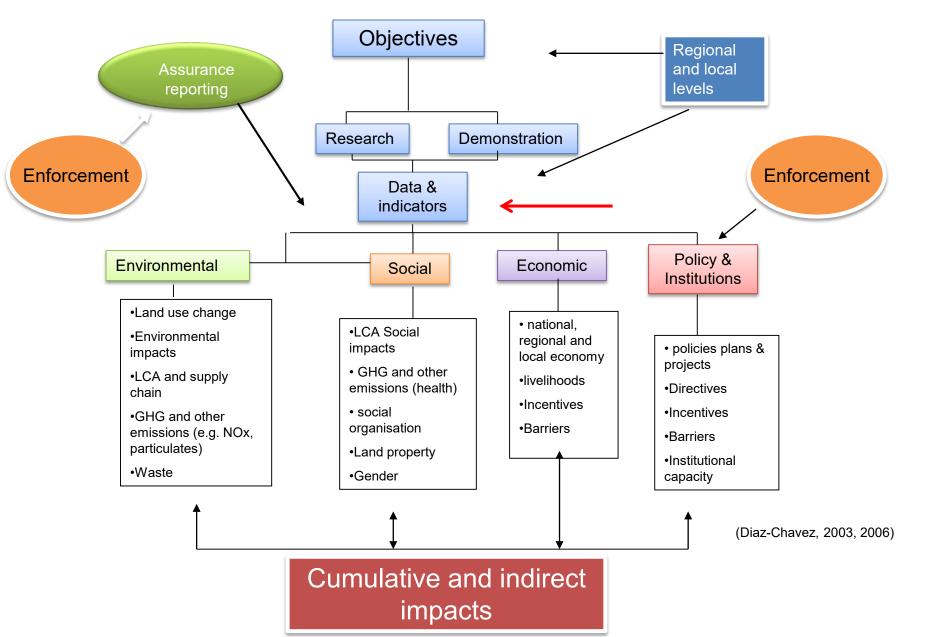

- **upgraded biofuels** for flexible on-site hybrid energy storage
- high market value platform chemicals forming the building blocks of various biopolymers and bioproducts.

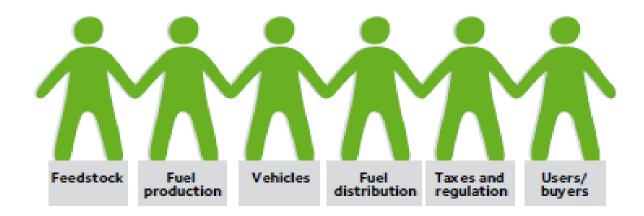


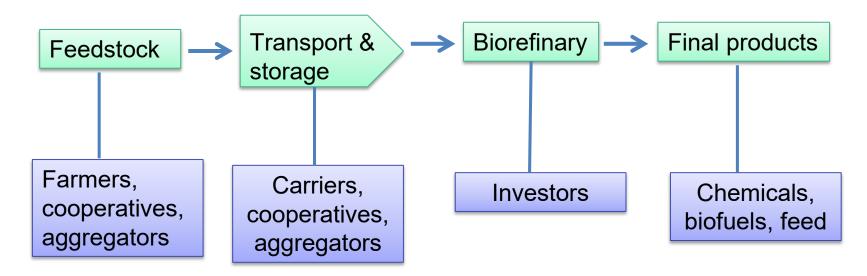
Technologies for CO₂ conversion into BioMethane (WP2); bioSA (WP3); PHAs (WP4)

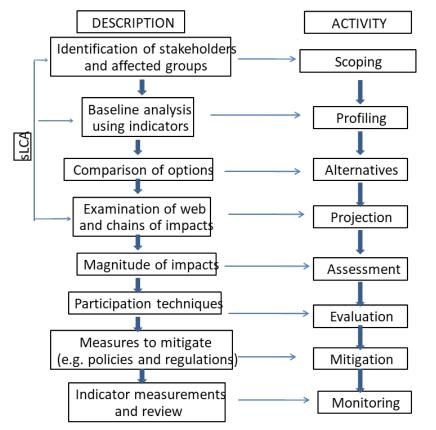


WP5 Sustainability assessment

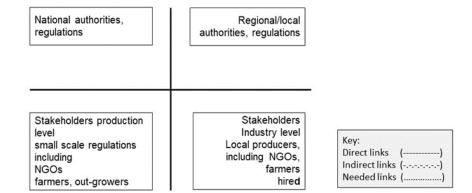

Adapted SCLA and SIA (Diaz-Chavez, 2014; Diaz-Chavez et al., 2016)




FRAMEWORK


Supply chain

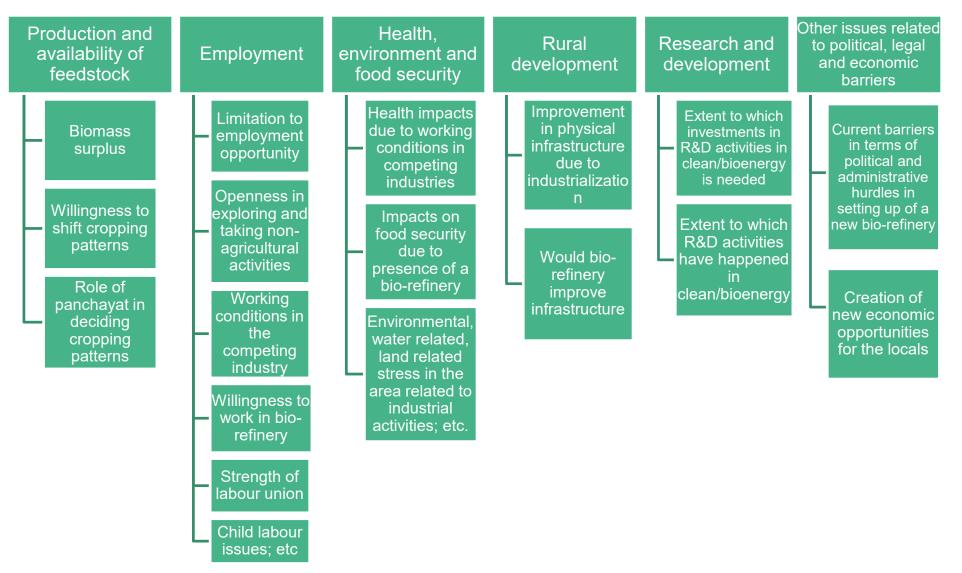
Socio-economic and policy assessment


Adapted social impact assessment to sLCA

The mapping of stakeholders uses a quadrat for sorting the stakeholders.

Stakeholders in crops and agriculture are identified first. Next are stakeholders at the production level, encompassing farmers, NGOs (and other civil organisations), and the industry sector (including also farmers with different forms of participation, such as out-growers). These are followed by stakeholders from local government, national government, NGOs (and other civil organisations) and industry. These last two quadrats may include also farmers, but at different levels of organisation.

The links between these different bodies and stakeholders are expressed depicted through lines, as direct, indirect or needed. The closer they are, the closer the relationship is or should be.


Source: Diaz-Chavez et al. (2010)

(Diaz-Chavez, 2012)

Key variables and sustainability indicators

Stakeholder assessment and engagement

Workshop in Bologna with stakeholders EUBCE, June 2023

Organisers Imperial College Dr Diaz-Chavez, Dr Evans and Dr Giarola Coordinator CooCe: Dr Tomas Morisoto

Advantages	Challenges			
CooCE Concept	Concept/CCUS			
Addresses policy agendas for lowering emissions	Competing uses for renewable energy			
Carbon negative	Complex market for biogas producers			
CO ₂ as feedstock	Costly investment			
Circularity	Energy requirements			
Decentralised approach	Lack of funding mechanisms			
Diversified applications	Little known yet			
Favoured by net zero emissions mandates	Multitude of stakeholders			
Suitable across industries/sectors	Own CO ₂ emissions			
Potentially profitable	Potential shortage of CO ₂			
Revenue pathway for biogas producers	Public perception			
Techno-process	Scalability			
Biodigestion	Slow market expansion in EU			
Bioreaction	Techno-process			
Biomethane upgrade	Bacteria use/storage/platform purification			
Gases purification	Biogas transportation			
Integrated System	H ₂ production			
System easy to operate	Large-scale growth of microorganisms			
Product	Potential CO ₂ leakage			
Biogas from CO ₂ upgrade	Reactor configuration			
Chemicals platform	Product			
Diversified range of outputs	Quality standards for commercial use			
Fuels from CO ₂ with H ₂	Policy/Regulation			
High Purity bio-CH ₄	Lack of consistency in EU regulations			
Bioplastics (rising demand)	Lack of policies for CCUS/its bioproducts			

No	Parameter	Characteristics/ Criteria	Assessment Level	Supply chain stage	Data type and source
1	Trade of feedstock	Incentives and barriers	EU/National	Feedstock	Qualitative Quantitative
2	Identification of stakeholders along the supply chain	Associations Authorities/regulators Businesses CO2 emitters Investors Researchers Etc	National Local	All	Qualitative
3	Policies and regulations	International National Regional Local	National International	All	Qualitative Quantitative
4	CO ² point source	Availability of feedstock (CO ₂)	Local	Feedstock	Qualitative
5	Land (N/A)	Availability in EUOwnership and rights	National		
6	Community participation	 Community acceptance of: feedstocks, processes, products other involvement 	National Local	All	Quantitative Qualitative
7	Quality of life N/A	Improvement of quality of life (longitudinal data needed)	National Local	N/A	Quantitative
8	Rural development and Infrastructure	 Roads Sanitation Water	National Local	All	Qualitative
9	Job creation and wages	Labour conditionsJob creationWage regulations	National Local	All	Qualitative Quantitative
10	Gender equity	Inclusion of women	National	All	Qualitative Quantitative
11	Labour conditions	ILO conventions and human rights including: • Child labour • Right to organise • Forced labour	National	All	Qualitative Quantitative
12	Health and safety	Compliance with health and safety regulations	National Local	All	Qualitative Quantitative
13	Competition with other sectors	Competition and negative impacts on other industries and sectors	National Local	All	Qualitative Quantitative

Source: Adapted from Diaz-Chavez (2014) Key: N/A= Not applicable

Accelerating **Social Sustainability Assessment** MPERIAL

Methodological Approach (Composite) Aims: Identify CooCe's potential societal impacts and risks Focus on CooCE Countries: Denmark, Italy, Greece, UK Social Impact Assessment (indicators) Social Life Cyle Assessment (indicators) Mapping of stakeholders Stakeholders' workshop and online survey Social Hotspot Database (indicators) Policy review (documents) **CooCE Product System** Purification Capture Transportation Utilisation Bioenergy Compression sources **Biochemicals** Biopolymers Chemicals Chemicals Transportation Bioplastics Electricity Storage Water gate **Social Hotspot Index for Gas** Society Labor Rights and Decent Work Health & Safety Community Governance (Denmark) Gas manufacture, distribution

CO2

Biogas

cradle

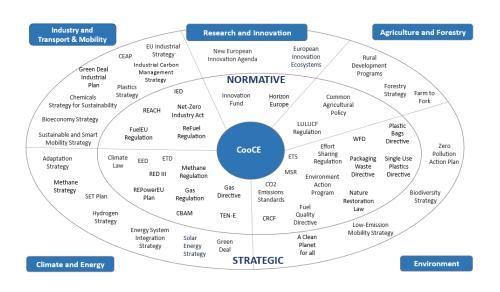
(Greece) Gas manufacture, distribution (Italy) Gas manufacture, distribution (United Kingdom) Gas manufacture, distribution

Social Sustainability Assessment of CooCE: Results for selected

Parameter	Criteria	Risk	Benefit	Observations, Issues and Mitigation	
Gender equity	Inclusion of women	М	Η	 Issue: men are generally more economically active than women in all CooCE countries, although gender employment and pay gaps have been narrowing Mitigation: ensure gender equality of opportunity or enhanced opportunity for women to access resources and services for participating in the implementation of CooCE (e.g.jobs, business ownership, supporting services, etc) 	
Labour conditions	Conventions on child labour, forced labour, right to organise	М	Н	 Observation: CooCE countries are signatories of most ILO conventions Issues: medium risk of lack of enforcement of labour laws and conventions in four sectors in all countries; high risk of excessive working time and of forced labour in Greece in all CooCE sectors; very high risk for migrant workers in Greece, Italy and the UK across all sectors Mitigation: monitor enforcement of legislation for labour protection to prevent excessive working time and exploitation of migrant workers 	
Health and safety	Compliance with health and safety regulations for each stage of the value chain	Η	Н	 Observation: all CooCE countries have legislation in place for health and safety at the workplace and are long-standing signatories of the Labour Inspection Convention Issues: very high occupational and health risks in all four CooCE countries and sectors; medium overall risk of lack of access to health care Mitigation: monitor enforcement of legislation for health and safety at the workplace and at public spaces (i.e. roads) to minimise risk of occupational injuries and hazards and public health hazards 	
Community participation	Involvement/a cceptance (feedstocks, technologies, products)	M	Н	 Issues: NIMBY syndrome; poor knowledge about CCUS and biodegradability of products; concerns about impacts on human health and the environment Mitigation: ensure engagement of local stakeholders in CooCE implementation; understake awareness-raising campagins on CCUS safety and environmental impacts (e.g. CO₂ leakages; use of water and chemicals; biodegradability) 	

Key: M= Medium; H=High

Policy Assessment


Assessment of EU and UK Policies relevant to CooCE (general/and pathways)

Aims: identify enablers and barriers to the implementation of CooCE in

- the EU (Denmark, Italy, Greece)
- the UK

Method:

- Description and critical review of policies
- recommendations for addressing challenges

Example of Assessment: Gas Directive (EU Directive 2024/1788) IMPERIAL

Assessment: This instrument is highly relevant to CooCE's renewable gas (biomethane) produced from upgrading CO2 from biogenic sources, as it is likely to expand and strengthen the gas market where CooCE's biomethane is traded and consumed. The non-discriminatory access to gas infrastructure for renewable gas producers creates new opportunities for biogas producers to integrate their products into the EU gas grid, supporting the transition away from fossil fuels. Clearer rules on grid connections will simplify the process for biogas producers, making market participation easier. The introduction of a certification system for renewable gases will require biogas production to comply with the directive's sustainability and emissions standards aimed at reducing greenhouse gases. Additionally, the EU's investment in repurposing natural gas infrastructure to accommodate renewable gases should lower costs for biogas producers and facilitate wider distribution. The phase-out of long-term contracts for unabated fossil gas by 2049 is likely to boost demand for renewable alternatives, creating a growing market for biogas. Overall, the directive may help establish a more favorable regulatory framework, supporting market expansion, enhancing energy security, and promoting sustainability.

Example of Challenges in Overarching EU Policy Instruments

Challenge: There is currently no unified or comprehensive EU regulatory framework for CCUS. Instead, CCUS is governed by various pieces of legislation, each focusing on different aspects such as emissions reduction, environmental protection, innovation, and infrastructure. Key legislations include the *ETS-I*, the *TEN-E Regulation*, the proposed *CRCF*, and the *Innovation Fund*. These directives, regulations, and funding programs cover aspects of CCUS but lack an integrated approach.

Recommendations: Create a comprehensive legal framework that includes specific policies for all aspects of CCUS and aligns cross-sector regulations to ensure consistency and coherence for projects such as CooCE.

Overall recommendations for policy issues

- Design policies specific for CCUS (feedstocks, techno-processes, products, bioproducts)
- Improve existing regulatory frameworks relevant to elements of CCUS to account and recognise the contribution of captured carbon bioproducts to energy targets and the CE
- Provide funding and investment mechanisms for developing CCUS biotechnologies

Integrated Sustainability Assessment

Assessment of CooCE Pathways

for

Pathway 1: Biomethane

Methodological Overview

- Integrated Approach: combines results from individual assessments and SWOT analysis
- Key Tool => Multi-Criteria Evaluation: 'traffic light' scoring system that identifies positive, neutral, or negative impacts based on selected indicators for each pathway; it enables structured comparisons of sustainability performance across pathways
- Scope: 'cradle-to-gate' (lifecycle)
- Aim: identify the most sustainable pathways for implementing CooCE technologies and products

Traffic Light Scoring System

	Very positive	Positive	Neutral	Negative	Very negative
Impact	++	+	0		
Risk Level	Very low	Low	Moderate	High	Very High

Theme	Indicators	Pathway 1:	Pathway 2:	Pathway 3:	Assessment Outcome
	marcacona	r dannoy 1.	r dannoy 2.	racimay 5.	
Technological	 CO₂ Storage 	0	+	++	3
	2. Barriers to Commercialisation	0	0		1,2
	 Electricity Source Reliance 		-		1,2
	4. Hydrogen Reliance	-	0		2
	1. Process Scalability	++	0	-	1
	 Regulatory Frameworks 	+	-		1
	3. TRL Development	++	+		1
ntal	4. CO ₂ Capture Rate	++	+	+	1
	5. CO ₂ Emissions	++	+		1
Environmental	 Energy Consumption 	0	0	-	1,2
Envir	11. Waste Generation	-	-		1
	12. Water Usage	+	+		1,2
	13. Energy Sourcing	0	0		1,2
	14. Location		++	+	2
ij	15. Market Price	-	+	-	2
Economic	16. Potential for	+	++	+	2
Ê	Circularity 17. Product Demand	+	++	+	2
	18. Product Volume	+	-		1
	19. Revenue Potential	+	++		2
Social	20. Job Creation	+	++	0	2
	21. Health and Safety	-	-	-	1,3
	22. Gender Equity	+	++	0	2
	23. Labour	+	++	0	2
Legal	24. Policy Instruments	+	-		1

ISA Matrix highlights the potential of Pathways 1 and 2 as sustainable options for CooCE implementation

Observation:

Outcomes do not necessarily imply that an impact or risk is inherently sustainable; rather it suggests that the identified pathway may be preferable to the alternatives

For example:

•

- Electricity Source
 Reliance
- Waste Generation
- Health and Safety

Indicators that exhibit negative impacts across all three pathways; these will require mitigation regardless of the pathway chosen

Links to bioeconomy and circular economy

ΤΜΡΕΡΤΔΙ

- Consider stakeholders along supply chains
- Enough data on biomass potential
- Origin/production of H2
- Financial issues for scaling upAssessment, uncertainty & subjectivity
- Mitigation and Monitoring
- Sustainable development main issues are related to public participation and engagement
- Consider other env management tools such as SEA

Strategic view for a renewal of the sector

Just transitions High level international organisations BIOECONOMY Policy agendas SDGs National/regional Industry Transport Rural development & agriculture Climate change Energy **Biorefineries** Economy Education Sustainable development (Diaz-Chavez, 2003, 2006 Environment, economic, social, policy

Dr Rocio Diaz-Chavez Centre for Environmental Policy Imperial College London <u>r.diaz-chavez@imperial.ac.uk</u>

<u>https://www.imperial.ac.uk/people/r.diaz-chavez</u> <u>https://www.researchgate.net/profile/Rocio-Diaz-Chavez</u> <u>https://www.linkedin.com/in/rocio-diaz-chavez-43569713/?originalSubdomain=uk</u>

This project is part of the ACT ERA-NET Co-fund under the European Union's Horizon 2020 Research and Innovation Programme (Project No 327331 CooCE) In the UK by the Department of Energy Security and Net Zero

