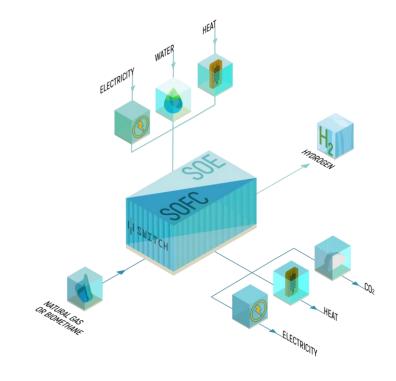
Enhancing off-grid energy security trough reversible solid oxide cell systems economic analyses of case studies and business models

Emre Avci, Marco Kunz, Oliver Woll

Lucerne University of Applied Sciences and Arts (HSLU), Switzerland

30.11.2024

**** * * ***



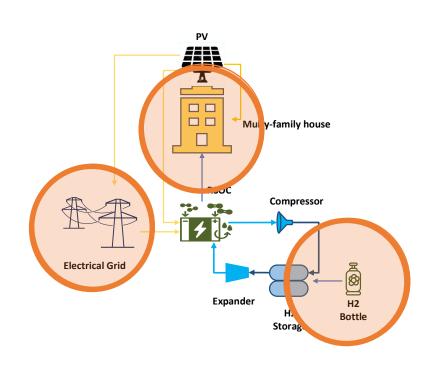
24_7 ZEN is supported by the Clean Hydrogen Partnership and its members Hydrogen Europe and Hydrogen Europe Research under grant agreement No 101101418.

Funded by the European Union and the Swiss State Secretariat for Education Research and Innovation (SERI). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or Clean Hydrogen Joint Undertaking. Neither the European Union nor Clean Hydrogen Joint Undertaking can be held responsible for them.

Key advantages of RSOCs

- ✓ Dual functionality: Electrolysis (hydrogen production) + Fuel cell (electricity generation).
- Support renewable energy integration and decarbonization.
- ✓ Address challenges of off-grid reliability and cost efficiency
- Sustainability by producing mostly green H2 in a flexible and reversible way
- ✓ Security of H2 supply

(Switch-FCH, 2023)

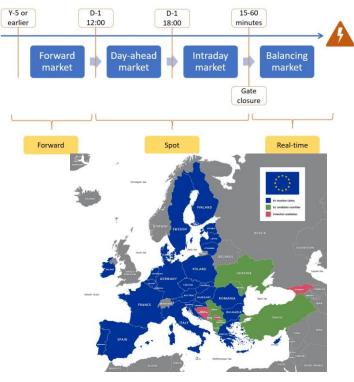

Ecosystem

Technoeconomic assessment

Different operational modes

Methodology

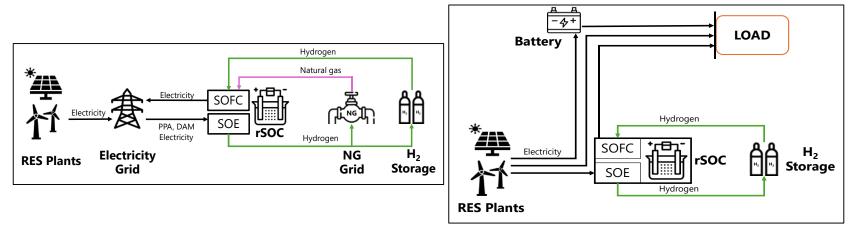
Different constellations


Co-funded by

the European Union

Different markets (where connected)

Detailed Energy Systems Requirements Definition


- ✓ The primary goal is to evaluate various configurations and determine the system's feasibility parameters.
- ✓ The scenarios serve as a tool for decision-making.
- Key criteria for the analysis CAPEX, OPEX, operational schedule/capacity factor, levelized cost of hydrogen (LCOH) and economic factors such as subsidies and tariffs.
- The aim is to identify the configuration that optimally balances technical efficiency with economic feasibility, considering also the factors associated with the installation location.

Parameter	Value	
CAPEX (€/KW)	3500	
OPEX (€)	2.0% of CAPEX per year + cost of energy	
SOEC efficiency (%)	80	
Discount rate (%)	2.5	
Lifetime period (y)	20	

Scenario topologies: General rSOC On-grid / Off-grid Integration

ON-GRID

- ✓ Inputs and outputs of rSOC for both SOE and SOFC.
- ✓ SOEC required energy consumed from the grid. (PPA, DAM).

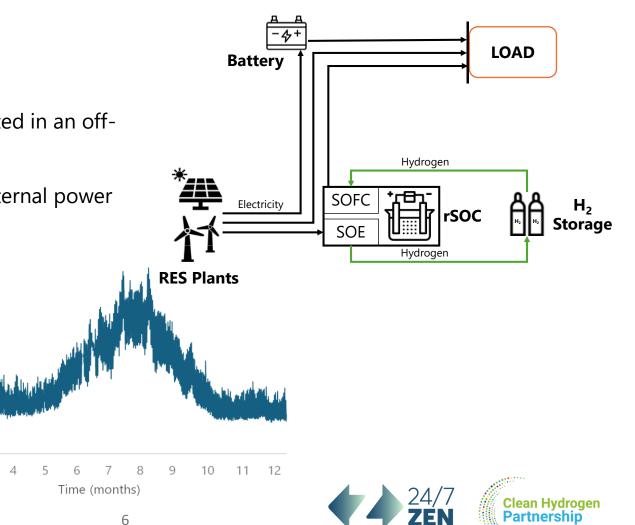
OFF-GRID

- ✓ Micro-grid configuration
- Demonstrate technical feasibility of rSOC implemented in an off-grid case.
- Goal is to achieve complete autonomy (minimize external power sources like diesel).

Off-grid integration of rSOC on an island

900

800 700


600

400 300

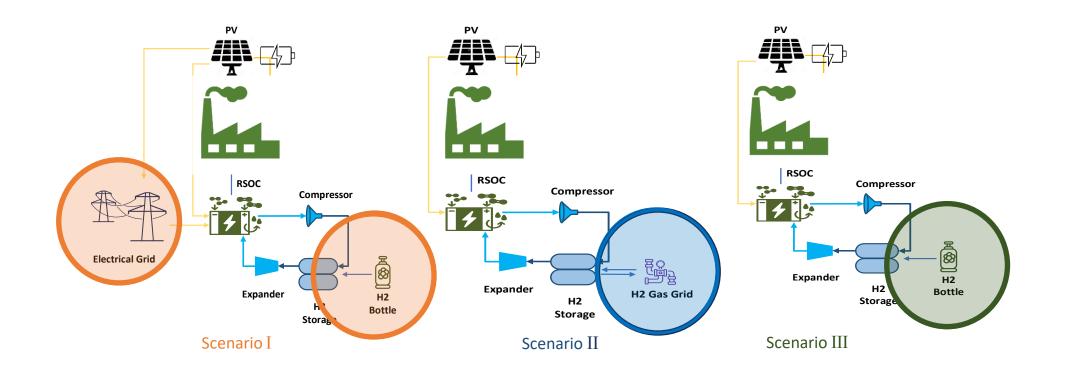
200 100 0

Load (kW) 500

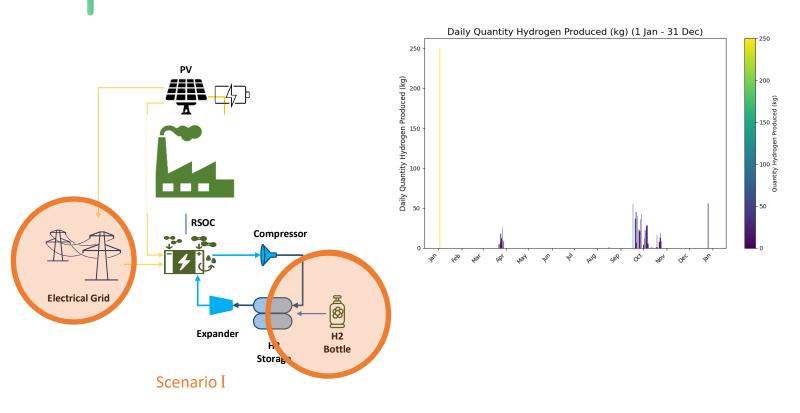
- Micro-grid configuration (non-interconnected) \checkmark
- ✓ Demonstrate technical feasibility of rSOC implemented in an offgrid case.
- ✓ Goal is to achieve complete autonomy (minimize external power sources like diesel).
- Data for RES and Load (2022). \checkmark
 - 3050 MWh annual load \checkmark
 - ~800 kW peak load \checkmark
 - 4905 MWh annual RES production \checkmark

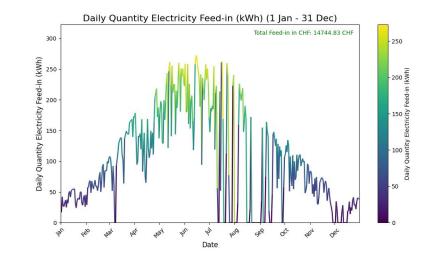
Results Off-grid integration of rSOC on an island

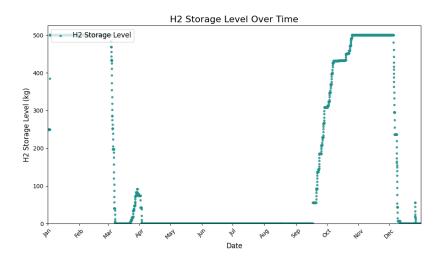
- ✓ Energy Management Strategy (EMS)
- ✓ Assessment of performance with Key Performance Indicators


Comp	onent	Capacity			
	_	Case 1	Case 2	Case 3	Case 4
RES	PV (MW)	2 MW			
RES	Wind	1 MW			
	SOEC 2 MW				
rSOC	SOFC		0.66 MW		
Battery	(MWh)	2.5 2.5 2.5		5	
H ₂ storag	ge (MWh)	15 25 50 50		50	

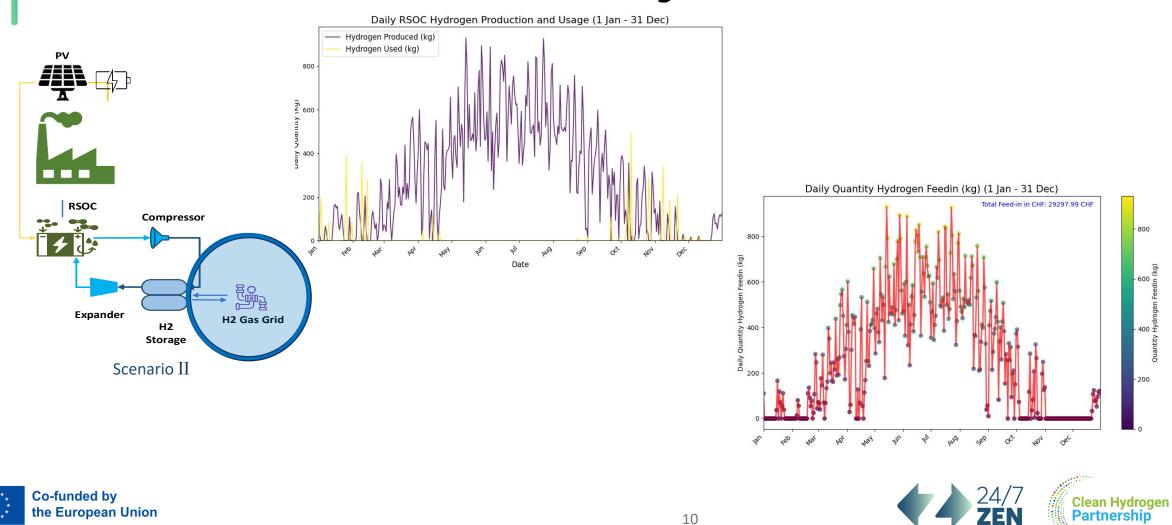
KPI	Value (%)			
	Case 1	Case 2	Case 3	Case 4
Surplus to battery	15.8	15.8	15.8	29.4
Surplus to hydrogen	33.4	36.5	39.5	26.4
Surplus to curtailment	49.4	47.7	44.7	44.2
Load satisfied by FC	10.7	11.7	12.6	7.2
Load satisfied by DSG	6.0	5.0	4.1	3.7
Load satisfied by BAT	15.3	15.3	15.3	21.1
Load satisfied by RES	68.0	68.0	68.0	68.0

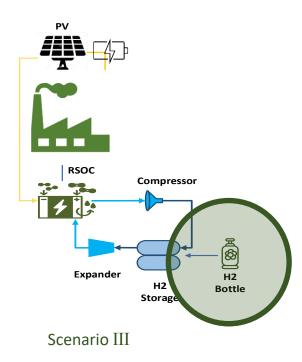

Scenario topologies: Industrial case study rSOC On-grid / Off-grid Integration

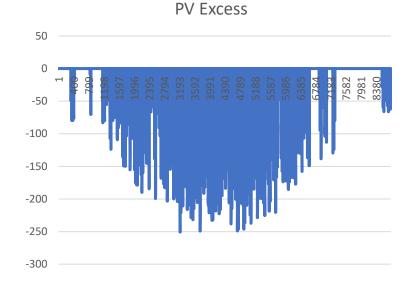


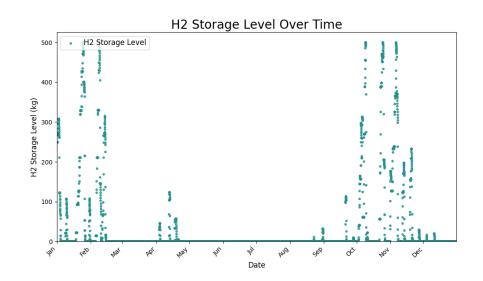


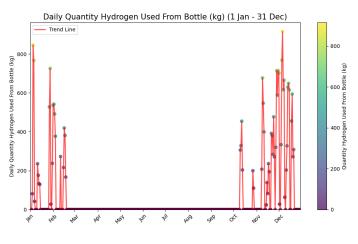
Results – Industrial case study





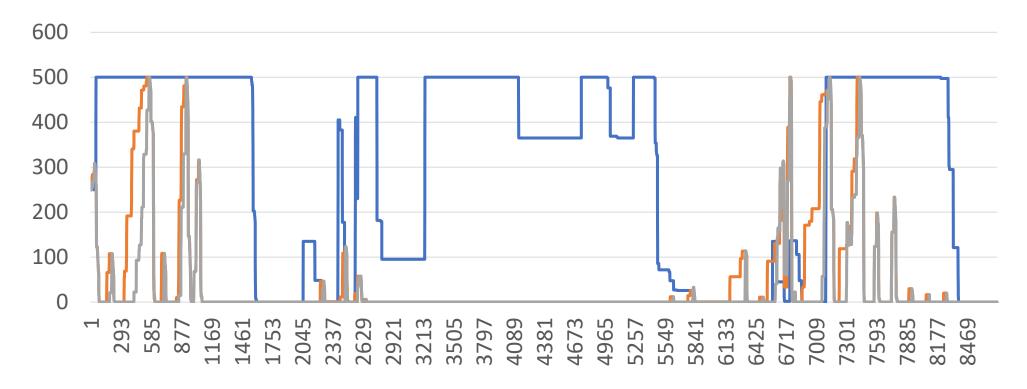

Results – Industrial case study


Technoeconomic assessment


Results – Industrial case study

 ✓ Hydrogen storage level must be 15 t in order to be fully self- sufficient (30x the current storage)

Results – Comparison Utilisation Hours


Percentage of utilisation hours per year	Elec grid Industry	Gas grid Industry	Island grid Industry
Fuel Cell	0%	3%	3%
Electrolyser	3%	29%	11%
Battery Charge	6%	20%	20%
Battery Discharge	31%	45%	45%
Backup	0%	0%	7%
Energy from Grid	61%	7%	0%
Energy to Grid	54%	26%	0%

12

Results – Comparison Hydrogen Storage Level

-Hydrogen Storage Level Elec -Hydrogen Storage Level Gas -Hydrogen Storage Level Island

24

Clean Hydrogen

Partnership

Business models to enhance Off-Grid Energy Security

Business Case	Description	Economic Benefits	Business Models
1. Remote Industrial Operations	Powering mining, oil & gas, and other remote sites with renewable energy and local hydrogen production.	- OPEX savings (diesel logistics).	 Energy-as-a-Service Hydrogen hub for nearby industries.
2. Disaster-Resilient Microgrids	Reliable energy for vulnerable/off-grid communities using solar/wind with hydrogen storage for outages.	Reduced downtime costs.Carbon offset revenue.	Public-private partnerships.Community cooperatives.
3. Renewable Hydrogen for Industry	Producing green hydrogen onsite for industrial processes like ammonia synthesis and steelmaking.	 Green product premium. Cost-competitive with grey H₂. 	Hydrogen-as-a-Service.Carbon credit monetization.
4. Maritime & Island Energy	Transitioning islands and maritime vessels from diesel power to renewable energy with r-SOC systems.	Fuel import cost savings.Lower emissions.	- Hybrid power provider.
5. Industrial Grid Stabilization	Storing surplus energy for peak shaving and backup power, ensuring grid stability for energy-intensive industries.	Avoided peak demand charges.Demand response revenue.	Energy arbitrage.Integrated energy solutions.

Conclusion

- ✓ Explored **integration configurations** for the hybrid rSOC system.
- $\checkmark\,$ Identified the operation profiles.
- ✓ Examined key factors in the scenarios, like **deployment scale** and **country-specific regulations**.
- ✓ Examined the techno-economic feasibility or rSOC's integration to the grids.
- ✓ Investigated case studies on off-grid scenarios for rSOC's
- ✓ rSOC is a compact solution with a single CAPEX investment: a single conversion unit operating on an integrated multisource mode.

Future research

- ✓ Analyse further industrial configurations
- ✓ Optimal sizing of system components in various scenarios
- ✓ In-depth analysis of relevant business models for reversible fuel cells

Thank you

24_7 ZEN is supported by the Clean Hydrogen Partnership and its members Hydrogen Europe and Hydrogen Europe Research under grant agreement No 101101418.

Funded by the European Union and the Swiss State Secretariat for Education Research and Innovation (SERI). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or Clean Hydrogen Joint Undertaking. Neither the European Union nor Clean Hydrogen Joint Undertaking can be held responsible for them.