

EVOLUTION OF ENERGY CONSUMPTION IN THE CITY OF MILAN

Lorenzo Monga - Head of Sustainable Transition Grids

Padua, 30th November 2024

A2A Smart Infrastructure Business Unit

Infrastructure are increasingly becoming crucial assets to enable the energy transition

2

Milan fact sheet

Milan is one of the most densely populated city in the EU, having also one of the largest economy among EU cities

¹Eurostat 2020, considering only cities with more than 0,5 M population and the city perimeter.² Assolombarda 2023 – association of companies operating in the Metropolitan City of Milan.

Historical data for Milan energy demand

In the last two years, high energy prices and high temperatures caused a slight decrease in consumptions

4

¹Final balance data for energy consumption available only for district heating, electric energy and gas.

Milan baseline energy demand

Significant use of gas for heating, high usage of fossil fuel for transport, predominant medium and low energy -class buildings

5

¹Combustion engine and fossil fuel transport consumption estimated .² Distribution estimated by CURIT Milano. ³Distribution of energy classes estimated by CENED Milano. ⁴Data estimated from ACI considering only vehicles registered in Milano.

Energy demand evolution

Electric energy 🔥 Natural gas 👪 District Heating

Green Molecules (H₂, biomethane) oil 💧

Change in energy demand up to 2050 is led by several drivers, impacting the way each energy vector meets the need for each final use

			Final uses				
			Residential and non - residential heating	Hot water	Appliances (cooling and cooking)	Mobility	Industry
			:0008:			(
Drivers	Energy efficiency	3	∧↓ ∳↓ ≞↓ <i>@</i> ↓	∧↓ ∳↓ ≖↓ ⊘↓	∧↓ ♥↓ ≖↓ ∕∕↓		∧↓ ♥↓ ∕∕↓
	Population and urban development		≬ ↑ ₩† ঊ↑ <i>∅</i> ↑	∧↑ ₩↑ ♣↑ <i>■</i> ↑	₩↑	▲↑ 🍄 ↑	
	Technology shift	4	∧↓ ₩↑ ♣↑ ∅↑	∧↓ ₩↑ ≖↑ <i>∞</i> ↑	₩↑	⊠↓∳↑	∧↓ ♥↑ ∕∕↑
	Photovoltaic	<u>ڳ</u>	₩↓	₩↓	\$	₩↓	₩↓

Increase/decrease of

usade

6

Approach to scenarios modelisation

Two different scenarios have been developed based on different assumptions based on European and Italian policies (NECP, EPBD and EED)¹

Energy demand evolution

Fast scenario evolution shows a global reduction in energy demand and growth of the electricity share

2,3 MWh (20%) Appliances

Energy demand evolution

Fast scenario evolution shows a global reduction in energy demand and growth of the electricity share

CO₂ direct emission evolution

10

Reduction in CO₂ emissions supported by electric production decarbonization and gradual abandonment of fossil fuel technologies

¹Based on aggregated data at regional level.

Investments to reach scenario target for Milan residential users

More than 31 B€ required at 2050, driven by renovation of buildings

¹Include DHC extension and power plant growth, electric grid upgrade, PV, Wind and electrochemical storage utility scale and biomethane share for Milan usages and e-mobility charging points. CAPEX related to business -as-usual activities not included; OPEX not considered. ² Include DHC connection, HP and PV installation, buildings renovation. Not included private and public mobility vehicles costs. ² Alloccated fund for energy efficiency in the Italian Recovery Plan equal to 20.5 B€ at national level.

Thank you

